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1 	 Introduction
1 2 3 4

Urban settings greatly affect the spatial patterning of 
crime. They determine the places people visit in the course 
of their day-to-day activities, the routes they take when mov-
ing between them and the interactions that they experience 
as they do so (Birks & Davis, 2017: 900). One of the most dis-
tinctive urban features is the street network. Street segments, 
which are more accessible and/or likely to lie in people’s eve-
ryday paths, will be expected to be more familiar to everyone 
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and, consequently, more likely to be targeted by offenders 
(Summers & Johnson, 2017: 399). Because of the presence 
of a larger number of people, the owners will tend to locate 
their commercial properties along the streets, thus further 
increasing the number of potential crime targets (Beavon, 
Brantingham, & Brantingham, 1994: 119). 

Locations and movements of potential victims, offenders 
and guardians are largely constrained by the structure of the 
street network. By dictating where, when and in which con-
texts potential victims, offenders and guardians interact with 
one another, the street network substantially influences the 
spatial distribution of crime (Birks & Davies, 2017; Summers 
& Johnson, 2017). As a result, many crimes will be concen-
trated on or near the street network. For example, Weisburd, 
Bushway, Lum and Yang (2004) examined street segments 
in the city of Seattle between 1989 and 2002 and found that 
50% of crime incidents over the 14-year period occurred at 
between 4 and 5% of street segments. The existence of spatial 
concentration of crime on street segments was confirmed by 
subsequent research conducted not only in Seattle (Weisburd, 
Groff, & Yang, 2012; Weisburd, Morris, & Groff, 2009), but 
also in other cities in the USA (Weisburd, 2015), Canada 
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(Andresen, Curman, & Linning, 2017; Boivin & Melo, 2019), 
Latin America (Chainey, Pettuchi, Rojas, Ramirez, Monteiro, 
& Valdez, 2019; Melo, Matias, & Andresen, 2015) and Europe 
(Favarin, 2018; Steenbeek & Weisburd, 2015; Vandeviver & 
Steenbeek, 2019).

Crime concentration along a street will form a linear distri-
bution (Milić, 2015; Milojković & Petrović, 2019). To identify 
this type of distribution, crime analysts may use “traditional” 
spatial statistical methods which are based on the assumption 
of a 2D homogeneous Euclidean space. However, when the 
spatial pattern of crimes which usually occur on street network 
is analysed, the assumption of homogeneity of the 2D space 
could lead to a false conclusion (Okabe, Satoh, & Sugihara, 
2009; Xie & Yan, 2008). To become suitable for analysing the 
linear distribution, these methods should be extended to the 
network space, which will ensure an unbiased identification 
of potential “linear” hotspots. Unfortunately, the limitations of 
the planar spatial statistical methods are often disregarded in 
police practice. This paper explains the specifics of the spatial 
analysis in a network setting, its relevance to the crime analy-
sis practice and the extension to the network space of one of 
the most popular methods for hotspot identification, i.e. the 
kernel density estimation (KDE) method. The aim of the study 
presented in this paper was to apply both the planar KDE and 
the network-based KDE (hereafter the NKDE) methods to 
the linear distribution and to compare their outputs in order 
to assess how accurately they reflect the spatial patterning of 
(linear) incidents. Based on the comparison of these outputs, a 
conclusion is made on the extent to which crime analysis may 
benefit from introducing the NKDE in its practice. 

2 	 The Need for a Network Spatial Analysis in 
Crime Mapping

Urban facilities, such as residential and commercial build-
ings, are situated on the streets, goods are transported along 
the street networks and the main protagonists of crime events 
are either on or near the street network during their day-to-
day activities. Therefore, the spatial distribution of various po-
lice calls for service is inherently linked to the street network. 
From the point of view of police organisations, crimes and 
traffic incidents are the most prominent events that trigger a 
police response on the streets. Consequently, the street net-
work is an important area of police deployment (e.g. police 
patrols), where the street layout often influences the way po-
lice resources are deployed (e.g. configuration of the patrol 
area, police response time, etc.).

Beginning with the Minneapolis Hot Spots Patrol 
Experiment (Sherman & Weisburd 1995), a series of studies 

has shown that crime prevention, which focuses on specific 
“micro” places with a greater number of crimes or a higher risk 
of victimisation in comparison with the surrounding areas, 
produces significant crime prevention gains (Braga, Turchan, 
Papachristos, & Hureau, 2019). These micro places, commonly 
referred to as “hotspots” of crime, are specific locations ranging 
from individual addresses or buildings, clusters of street ad-
dresses or groupings of street blocks to single street segments 
(Weisburd, Bruinsma, & Bernasco, 2009). Acting as “behaviour 
settings” and capable of capturing the rhythms of everyday life 
in cities better than larger spatial units (e.g. neighbourhood), 
street segments have become increasingly popular as analysis 
units in place-based criminology (Weisburd, 2015). 

According to Weisburd (2015: 26), more than 80% of 
crime incidents were associated with street segments. This ap-
plies not only to property crime (Beavon et al., 1994; Lu, 2006), 
but also to violent crime (Summers & Johnson, 2017). Police 
resources are deployed to high-risk street segments in order 
to deter potential offenders (e.g. increased patrols) and/or 
modify situational characteristics of places usually under the 
framework of problem-oriented policing (Goldstein, 1990). 

High-risk street segments (hotspots) must be identified 
in order to come to the forefront of police attention. There is 
a number of hotspot identification methods and techniques 
in contemporary crime mapping practice (Eck, Chainey, 
Cameron, Leitner, & Wilson, 2005). Basically, these methods 
are aimed at establishing whether crime distribution is spa-
tially clustered and, if so, at identifying them. Most of these 
methods are based on the assumption that crime events are 
distributed in an infinitely homogenous and isotropic space, 
and use the Euclidean distance for denoting the distance be-
tween them (Tompson, Partridge, & Shepherd, 2009; Yamada 
& Thill 2010). However, many spatial point events associated 
with human activities take place in urban environments, 
where homogeneity and uniformity are highly distorted by 
the restriction of movement imposed by the street network. 
For example, street crimes and car accidents tend to happen 
only on street networks; hence it is unrealistic to expect that 
hotspots would be found outside the street network. In view 
of the benefits of hotspot policing, crime analysts are very 
interested in identifying linear (street) segments where these 
events are concentrated, i.e. network hotspots, in order to 
ensure an effective deployment of resources and initiate re-
medial measures. 

Traditionally, the spatial distribution of events that occur 
either on or alongside a network is analysed by using the pla-
nar spatial analysis methods, which are based on the assump-
tion of the 2D homogeneous Euclidean space. This might 
lead to biased conclusions because the Euclidean distance 
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is an inappropriate measure in networks. Locations may be 
very close to one another in a planar space, however, this is 
not the case in a network space. The point distribution that 
forms a random pattern on a network may be interpreted as 
a clustering pattern on a plane merely because the network 
itself is a clustered subset of the planar study region (Okabe 
& Sugihara, 2012: 5; Yamada & Thill, 2007: 271). In the net-
work analysis, the proximity of events is not the only crite-
rion for the establishment of clustering. Indeed, connectivity 
is another criterion that should be considered. Consequently, 
clustering techniques based on proximity may reveal differ-
ent potential common causes for network events than cluster-
ing techniques based on connectivity (Steenberghen, Dufays, 
Thomas, & Flahaut, 2004: 170). In order to ensure a more 
realistic distance measurement, some planar spatial statistics 
methods use an alternative measurement, i.e. the Manhattan 
distance, which is based on a grid street layout and is meas-
ured by combining two straight lines connected at a right an-
gle. In a gridded network, the Manhattan distance appears to 
be a worthy substitute for the Euclidean distance, however, as 
noted by Tompson et al. (2009: 80), the Manhattan distance 
may still underestimate the distance between two points even 
on a gridded network and could fall short of the total net-
work distance between the points. Nevertheless, when the 
measurement of the street/network distance is not possible, 
the Manhattan distance is a better measurement than the 
Euclidean distance (Chainey & Ratcliffe, 2005: 301; Rossmo, 
Laverty, & Moore, 2005: 111). The Euclidean or straight-line 
distance is always the shortest distance between two loca-
tions. The network distance is almost always the longest and 
the most accurate. Empirical examinations show that the dif-
ference between Euclidean distances and their correspond-
ing network distances exceeds 20% when Euclidean distances 
are shorter than 400 metres (Okabe & Sugihara, 2012). As a 
result, the network or shortest-path distance should be used 
instead of the Euclidean distance in network spatial analysis.

3 	 Network Spatial Analysis

Spatial analysis along networks, or network spatial analy-
sis, entails statistical and computational methods for analys-
ing events occurring on and alongside networks (Okabe & 
Sugihara, 2012). Network spatial analysis is a relatively new 
concept in the spatial statistics field. Until the early 1990s, 
there was little interest in researching the statistical analysis of 
on- network events. The situation has changed drastically due 
to the GIS advances, progress in computational geometry and 
a greater availability of the digital representation of network 
data, together with a growing recognition among scientists of 
the limitations of spatial methods based on the 2D Euclidean 
space (Okabe, Yomono, & Kitamura, 1995: 153). Researchers 

from different fields set out to extend the traditional (planar) 
point pattern analysis methods to a network-constrained en-
vironment or to formulate new methods. Major progress was 
made within two decades. These efforts mainly focused on 
extending planar spatial statistics to networks. For example, 
Okabe and Yamada (2001) extended the planar K‐function 
method and formulated the network K‐function method, 
which is used for testing the hypothesis that points are uni-
formly and independently distributed over a network, as well 
as the network cross K‐function method, which is used for 
testing the hypothesis that two different distributions are in-
dependently distributed over a network. Comparing the out-
puts of the planar K-function and the network K-function, 
Yamada and Thill (2004) concluded that the planar K-function 
analysis has a significant chance of over-detecting clustered 
patterns. When analysing the crime pattern of vehicle thefts, 
Lu and Chen (2007) reached a similar conclusion – the planar 
K-function is likely to produce false positives when detecting 
clusters. The existence of false positives or false negatives, ac-
cording to these authors, largely depends on the nature of the 
urban street networks and the distribution of urban activities. 
Yamada and Thill (2007, 2010) introduced network extensions 
of the local Moran’s I statistic, and the local Getis and Ord 
G statistic in the case of phenomena, which are represented 
by attribute values of individual network links. Steenberghen 
et al. (2004) used the linear local Moran’s I and the planar 
KDE for identifying road crash hot zones. Black (1992), and 
Black and Thomas (1998) applied the Moran’s I to assess the 
network autocorrelation in order to estimate the influence 
of values associated with interconnected links. Okabe et al. 
(1995) made an extension of the nearest-neighbour distance 
method defined on a plane to a method defined on a network. 
Shiode (2008) extended the conventional (planar) quadrat 
method and proposed a network-based quadrat method. The 
network-based units are used instead of planar quadrants in 
order to achieve greater accuracy in the aggregation of points 
on the network. Borruso (2005) proposed a KDE extension, 
called the Network Density Estimation (NDE), which is based 
on network distances. By comparing the KDE and the NDE, 
Borruso (2008: 399) concluded that although differences be-
tween the results are not very high, the NDE seems to be more 
proficient in highlighting “linear” clusters oriented along a 
street network. Xie and Yan (2008, 2013) developed a net-
work-based kernel density estimation to estimate the density 
distribution of traffic accidents in a network space. The net-
work space is represented by basic linear units of equal net-
work length, termed lixels (linear pixels). According to their 
test results, the NKDE is more appropriate than the standard 
planar KDE for the density estimation of traffic accidents, 
since the latter includes the space beyond the event context 
(network space) and is likely to overestimate the density val-
ues. Okabe et al. (2009) proposed a network-constrained KDE 
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method and developed a plug-in tool for using this method 
in the GIS. Nie, Wang, Du, Ren and Tian (2015) introduced 
a two-step integrated method, called the NKDE-GLINCS, in 
order to identify high-risk locations on road segments. Firstly, 
they applied the network-constrained kernel density estima-
tion (NKDE) and then used the calculated density as the input 
value for the network constrained Getis-Ord Gi*. 

4 	 Network Kernel Density Estimation 

The planar KDE is a well-known tool for discrete events 
in point-pattern analyses. It is widely used by academics and 
practitioners as a spatial smoothing technique in many fields, 
such as economics (Haichao, Yan, Chengliang, &, Fei, 2018), 
demography (Vasan, Baker, & Alcantara, 2018), criminol-
ogy (Chainey, Tompson, & Uhlig, 2008), ecology (Zanón-
Martínez, Kelly, Mesa-Cruz, Sarasola, DeHart, & Travaini, 
2016), epidemiology (Bithell, 1990), urban studies (Porta et 
al., 2012), etc. As for the field of crime analysis and hotspot 
identification, this is the most suitable technique for visualis-
ing crime data, while , as noted by Chainey et al. (2008), its 
predictive “strength” outperforms other methods.

The popularity of the KDE in crime analysis results from 
several factors. Firstly, it is easy to generate, as most GIS soft-
ware allow their users to create KDE maps with a few mouse 
clicks. Secondly, it is easy to interpret. Thirdly, since the KDE 
is not reliant on administrative boundaries, it overcomes the 
modifiable areal unit problem (MAUP). Fourthly, it is visually 
appealing. Unlike some other hotspot analysis techniques (e.g. 
STAC, nearest neighbour hierarchical clustering, K-means 
clustering, etc.), where ellipses and/or convex hulls are drawn 
around the cluster(s) of crime incidents, the KDE offers a more 
realistic and accurate hotspot representation, which is often 
odd-shaped and irregular (Paulsen & Robinson, 2004: 326). 

In the planar KDE, the space is characterised as a 2D ho-
mogeneous Euclidian space and the entire 2D plane of the 
study area is taken as the context. As a result, all network 
events falling into the “search window” are considered, in-
cluding those that may be near one another, but are not con-
nected on the network (Figure 1). Since the planar KDE takes 
into account the proximity, rather than the connectivity of 
events, its output may suggest a causal relationship between 
two close, albeit unconnected events (Steenberghen et al., 
2004: 176). Therefore, when the planar KDE is extended to 
the NKDE, the network distance, calculated as the shortest-
path distance in a network, should be used instead of the 
Euclidian distance, and applied to both the search bandwidth 
and the kernel functions’ weighting (Xie & Yan, 2008). At the 
same time, circular bandwidth is replaced by a division of the 

road network into fixed length units, called lixels. The NKDE 
works by extending the bandwidth distance along the street 
network; hence, the NKDE generates linear hotspots.  

Figure 1: The difference between the 200 metres search 
regions of a network (shortest path) and Euclidean distances

Although the limitations of the planar KDE applied to 
network events seem obvious, some authors still disregard 
them. For example, Erdogan, Yilmaz, Baybura and Gullu 
(2008) used the planar kernel density to calculate the den-
sity of accidents in a 0.5 km search radius along highways. 
In a study aimed at identifying crash hotspots in a road net-
work, Thakali, Kwon and Fu (2015), as well as Rouzbeh and 
Shahriar (2017) used the planar KDE in the identification of 
crash black-sites. The planar KDE was also used by Anderson 
(2009) in the study of spatial patterns of injury-related road 
accidents, as well as by Blazquez and Celis (2013) in the spa-
tial analysis of child pedestrian crashes.

The extension of a kernel function to a network envi-
ronment is not a straightforward process. A network has its 
own topology, where line segments are represented by links 
and the endpoints of segments by nodes. The fact that many 
links can share the same node complicates the kernel func-
tion computation. When a kernel function traverses a node, 
its search bandwidth includes all line segments that share that 
node with the same “value”, resulting in an overestimation 
of density around the nodes (Okabe et al., 2009). To avoid 
the overestimation of density around the nodes, Okabe et al. 
(2009) proposed the equal-split discontinuous and the equal-
split continuous kernel functions, and proved their unbias-
edness around the nodes in a network space. In the case of 
the equal-split discontinuous kernel (Okabe et al., 2009), the 
kernel “value” at nodes is split equally into outgoing segments, 
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thus making the kernel function discontinuous at the nodes. 
For example, if there are two outgoing segments from a node, 
the kernel density is divided equally and assigned to each link 
while keeping the total value unchanged (Figure 2).

In case of the equal-split continuous kernel function 
(Okabe et al., 2009), values are adjusted by increasing the val-
ue of outgoing segments and decreasing the value of incoming 
segments in a discontinuous algorithm in order to preserve 
the kernel continuity across the node (Moradi, Rodríguez-
Cortés, & Mateu, 2018). Unlike the discontinuous kernel 
function, which only traverses “forward”, the continuous 
function traverses both “forward” (the value increases) and 
“backward” (the value decreases), which increases its compu-
tation time, but preserves the continuity of the function and 
keeps the total value unchanged.

5 	 Network Analysis of Traffic Accidents in the 
Municipality of New Belgrade (Belgrade, 
Serbia) – A Comparison Between Planar 
KDE and NKDE Outputs

5.1 	Study Area

This study focuses on the municipality of New Belgrade, 
which is one of the 17 municipalities of Belgrade, Serbia’s 
capital and its largest city. New Belgrade is a highly urban-
ised municipality and the central business district of Serbia. 
According to official data, it stretches over 4,096 hectares of 
land and is populated by 214,506 people (permanent resi-
dents), while the Ministry of the Interior of the Republic of 
Serbia estimates that this municipality has 300,000 inhabit-
ants. The New Belgrade road network consists of around 460 
km of primary, secondary and tertiary roads, including a sec-
tion of the highway (E70 route).

5.2 	Data

In police practice, street crimes and traffic incidents are 
the most prevalent types of “linear” incidents. Unfortunately,

the Serbian police did not engage in a practice of storing street 
crime data with enough location details that would enable suc-
cessful and precise geocoding, particularly in the case of crimes 
committed away from any building with a (street) number. At 
the same time, traffic accidents were recorded with high spa-
tial accuracy because traffic police officers were equipped with 
GPS receivers. As a result, the longitude and latitude are avail-
able for all traffic accidents. Therefore, the distribution of this 
type of linear incidents was selected to be spatially analysed 
in this paper. It should be noted that the distribution of traf-
fic accidents was traditionally analysed only by traffic safety 
professionals, however, it has recently come into the focus of 
crime analysts, too. There is growing evidence that in the scope 
of a strategy known as Data-Driven Approaches to Crime and 
Traffic Safety (DDACTS), the combining of crime and traffic 
crash locations may serve as a valuable input for an effective 
allocation of police resources. Although criminal offences and 
vehicle crashes are not similar problems that can be solved by 
applying the same policing strategy, the evidence of research 
studies conducted across the USA shows that highly visible 
traffic enforcement may indeed have an impact on both prob-
lems (Carter & Piza, 2018).

The dataset used in this study covers a period of three 
years (from 2016 to 2018). The data provided in the Excel 
format were converted into a GIS shapefile, and projected 
and mapped by using the ESRI ArcGIS. All traffic accidents 
involving parked vehicles were excluded from the provided 
dataset and a total of 7,126 traffic accidents were mapped. The 
street network was downloaded from the OpenStreetMap, 
clipped to the study area boundary, and reduced only to the 
highway, primary, secondary and tertiary roads. Traffic ac-

Figure 2: Illustration of the network kernel density 
function (left) and the network discontinuous kernel function (right) at a node
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cidents were snapped to the closest street segment with the 
search tolerance of 15 metres. These procedures reduced the 
initial number of traffic accidents to a total of 5,997 (Figure 3).

5.3	 Methods

In this study, we applied the planar KDE by using the 
ESRI ArcGIS software and the network-based KDE (Okabe et 
al., 2009) by using the SANET Standalone 1.0 software.5 The 
results of the network-based KDE were used as input values 
for computing the Getis-Ord GI* statistics in order to detect 
statistically significant network-constrained hotspots.

5.3.1  Parameter Selection

The selection of parameters, which is usually subjective, 
is one of the most sensitive steps in the implementation of 
the KDE. In practice, most analysts select their parameters 
through an empirical trial-and-error procedure (van Patten, 
McKeldin-Conor, & Cox, 2009) or simply use the default GIS 
options for the KDE, unaware of the potential effect of these 
settings on the final output (Chainey, 2013: 18; Tompson et 
al., 2009: 81).

5	 SANET. A Spatial Analysis along Networks (Ver. 4.1). Atsu Okabe, 
Kei-ichi Okunuki and SANET Team, Tokyo, Japan.

In view of the fact that small variations in KDE parame-
ters can result in different outputs, the research on the param-
eter selection included both the planar KDE (Chainey, 2013;

Chainey et al., 2008; Hart & Zandbergen 2012; Levine, 2008)
and the NKDE (Xie & Yan, 2008). There are still some ques-
tions that need to be answered, such as: what are the optimal 
KDE parameters? How to determine them? Is there a consen-
sus regarding what should be considered as optimal stand-
ards? Can they be established at all?

Both the planar KDE and the NKDE require three param-
eters to be determined: 1) the grid cell/lixel size, 2) the band-
width (search radius/area), and 3) the calculation method 
(kernel function). They affect the calculation of the density 
surface, and, together with 4) the classification scheme, they 
influence the appearance of the final output (density map). 

5.3.2  Kernel Function

There are different kernel functions and the selection of 
the one to be used depends on how much the user wants to 
weigh the near points relative to far points. In the event of us-
ing the planar KDE, they result in small differences in density 
values (Levine, 2004) and this may explain why the choice of 
the optimal kernel functions was rarely the subject of discus-
sion in the crime mapping literature. A similar conclusion 

Figure 3: Distribution of traffic accidents across the study area
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could be applied to the NKDE. After comparing the Gaussian 
and Quartic kernel functions, Xie and Yan (2008) concluded 
that the choice of kernel functions made little difference in the 
overall (network) density pattern. 

When it comes to the choice of kernel functions, this 
study uses the defaults provided by the software. The quad-
ratic kernel function is used for both the planar KDE and the 
NKDE as a predefined function in the ESRI ArcGIS software 
and the SANET software, respectively.

5.3.3  Bandwidth

The choice of bandwidth has drawn a great deal of atten-
tion in disciplines that are widely applying the KDE due to the 
fact that, when varied, this parameter will result in differences 
in the KDE output. Too large a bandwidth will conceal the 
local spatial variation of events (e.g. by drawing attention to 
an entire street and making it difficult to identify the street 
segments of true safety concerns), while a narrow search 
bandwidth may only highlight isolated individual clusters, 
thus obscuring the larger hotspots. Although crime mapping 
literature offers different recommendations on the choice of 
the appropriate bandwidth size for the planar KDE, when it 
comes to the NKDE, little, if any, work has been published 
(Boss, Nelson, & Winters, 2018: 105).

Given that distances are calculated differently in the pla-
nar KDE and the NKDE, any chosen bandwidth is unlikely to 
be optimal for both methods. Since the optimal bandwidth in 
an urban area should be between 100 and 300 metres at the 
scale of a neighbourhood, block and street (Porta et al., 2009), 
and since it has been empirically observed that the difference 
between the Euclidean distances and their corresponding 
shortest-path distances exceeds 20% when the Euclidean dis-
tances are less than 400 metres (Okabe & Sugihara, 2012), the 
bandwidths used in this study were 250 metres for the planar 
KDE and 300 metres for the NKDE. 

5.3.4  Cell Size

The NKDE lixel length, like the planar KDE cell size, deter-
mines the resolution of the density output. As the lixel length 
increases, the density values along streets lose local variation 
details. In view of the incident type that represents the subject 
of this research (traffic incidents), the accuracy of GPS receivers 
in the urban environment and recommendations from litera-
ture, where the optimal lixel length is between 10 and 40 metres 
(Khalid et al., 2018; Luliang, Zihan, Xia, Fei, Xue, & Qingquan, 
2016; Nie et al., 2015; Xie & Yan, 2008), the researchers believed 
that the appropriate value for both the cell size (planar KDE) and 
the lixel length (NKDE) in this study should set at 30 metres.

5.3.5  Classification Scheme and Hotspot Threshold Settings

Last but not least, the range settings used for classifying 
the calculated density values represent an important param-
eter that may affect the KDE output, since different choices 
may result in vastly different map outputs. This paper uses 
incremental multiples of the planar KDE grid cells and the 
NKDE lixels mean. Calculations for the mean are applied 
only to the cells/lixels with a value greater than 0, while the 
cells/lixels with a value greater than 3 times the mean are con-
sidered “hot”. The mean is a value which may be more eas-
ily grasped by a novice map reader (Chainey, Reid, & Stuart, 
2002: 32) and has some empirical support in practice (Milić, 
Popović, Mijalković, & Marinković, 2019).

6 	 Results and Discussion

In this study, the planar KDE and the NKDE are com-
pared. Although common hot (high density) regions may be 
identified on both maps, the two maps are generally different. 
The planar KDE generated circular or ellipsoidal hotspots, 
while the NKDE generated linear hotspots (Figure 4). 

Figure 4: NKDE (bandwidth = 300 m, lixel size= 30 m) and planar KDE (bandwidth = 250 m, cell size = 30 m) hotspots
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For the selected bandwidths, the planar hotspots are much 
greater in extent than those created by using the NKDE and 
they cover areas outside the street network. Figure 5 shows 
that almost all linear (NKDE) hotspots are located inside the 
planar KDE hotspots. Only four “hot” street segments are 
located outside the planar hotspots, while eleven planar hot-
spots do not contain any linear hotspots. A similar conclusion 
– that both approaches show high density clusters of activities 
approximately at the same locations – was drawn in a research 
study conducted by Porta et al. (2012) on the basis of a visual 
comparison between the KDE and the NKDE. 

Planar hotspots occupy a total area of 3.9 km2 (9.52% of 
the total study area), while the total length of linear hotspots 
is 13.18 km (3% of the total length of the street network). 
There were 2,911 traffic accidents (48.5%) in the planar hot-
spots and 1,232 (20.5%) in the linear hotspots. The fact that 
almost all linear hotspots are encompassed by the KDE hot-
spots may indicate that the KDE may be useful for detecting 
a general pattern of incidents. A similar observation can be 
found elsewhere (Tang, Knodler, & Park, 2013). Planar hot-
spots cover a much greater area than linear hotspots. When it 
comes to the problem identification (e.g. the prerequisite for 
hotspot policing or problem-oriented policing), precision is 
of utmost importance and in this respect the NKDE shows 
to be more advantageous. For example, Xie and Yan (2008) 
state that in order to detect a problem on a street segment, 
the planar KDE may not be suited for characterising certain 

point events, such as traffic accidents. Figure 6 shows that 
the NKDE identified fewer high intensity street segments 
and provided more accurate results. Its values are distrib-
uted only along the street network and, for example, it was 
able to distinguish between different densities in two traffic 
lanes of different directions along the same street. The fact 
that the NKDE output is more precise than the KDE output is 
consistent with findings presented by other research studies 
(Tang et al., 2013; Xie & Yan, 2008).

Planar KDE hotspots are mostly concentrated around 
nodes (street intersections or roundabouts). Due to the pla-
nar KDE circular search radius and the Euclidean distance 
measurement, the search bandwidth may pick up events from 
incoming and outgoing street segments, and sometimes even 
from the nearby street segments (Figure 6). This is especially 
notable if a larger search bandwidth is used. The fact that the 
KDE is likely to overestimate density was also noted by other 
researchers (Okabe et al., 2009; Xie & Yan 2008).

Figure 5: Differences between the planar KDE and NKDE hotspots
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Both the equal-split continuous and the equal-split dis-
continuous kernel functions were applied in this study. As 
explained by Okabe et al. (2009), the advantage of the equal-
split discontinuous kernel function stems from a shorter 
computation time, particularly when applied on a complex 
network, where network links are less than one quarter of 
the bandwidth. Figure 7 shows that density values are almost 
similar. In this study, computation time drastically increased 
when bandwidths exceeded 250 metres and the maximum 
bandwidth that our (modest) hardware could compute for the 
continuous kernel function was 400 metres. The algorithm 
structure for both functions is similar and the only difference 

lies in the manner of splitting. Continuous splitting demands 
more computational time, which means that the discontinu-
ous function should be used when computational time is an 
important element (Okabe & Sugihara, 2012: 193).

Figure 6: A closer look at the planar hotspots
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Like the planar KDE, the NKDE is also very sensitive to 
parameter selection. As the kernel density bandwidth increas-
es, the density results change considerably. When the density 
bandwidth increases from 150 to 500 metres, local variations 
are lost and density results become smoother (Figure 8). 

When the kernel density bandwidth is at 150 metres, the 
maximum kernel density of the basic linear unit amounts to 
65,241. As the search bandwidth increases, the maximum lixel 
density rises to 102,306 (Figure 9).

In contrast to the selection of the appropriate cell/lixel 
size, bandwidth and kernel function, as the parameters that 
precede the calculation of kernel density, grid cell values are 
classified and visualized subsequently, which also calls for 
some subjective decision-making. Unlike with other KDE 
parameters, available literature has disregarded the influence 
of different classification methods applied on the calculated 
density values – including the choice of a threshold that sepa-
rates “hot” and other values – on the KDE hotspot predictive 
accuracy (Milić et al., 2019). The impact of different classifica-
tion schemes on the study data may be observed in Figure 10.

The main limitations of the NKDE are that no statisti-
cal inference can be made and that there is no indication of 
a density threshold above which a hotspot can be confidently 

Figure 7: 3D view of the equal-split discontinuous (up) 
and the equal-split continuous kernel functions (down))

Figure 8: The impact of various bandwidths on 
the NKDE output – 150 metres (up), 300 metres (middle) 

and 500 metres (down)
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Figure 9: The impact of various bandwidths on the lixel density

Figure 10: The impact of different classification schemes on the NKDE output – standard deviation classification (upper left), 
natural breaks classification (upper right), 3 lixels’ means classification (lower left) and quantile classification (lower right)
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declared (Xie & Yan, 2013). In order to add statistical signifi-
cance, the NKDE output was used as the input value for com-
puting the Getis-Ord Gi* statistics. The Getis-Ord Gi* works 
by looking at each feature within a defined distance (neigh-
bourhood) and evaluating the degree to which each feature is 
surrounded by features with similarly high/low values. Before 
the application of the Getis-Ord Gi* method, there was a need 
for “network constraining” because, originally, this method 
had been intended for “planar” calculations on the polygon 
and point features. After constructing a spatial weight ma-
trix, spatial relationships among the streets are defined for the 
purpose of preventing this method from using unconnected 
street segments in calculations. The resultant z-scores and 
p-values show where features with either high or low values 
cluster spatially. For significant positive Z-scores, the larger 
Z-score indicates a more intense clustering of high values, 
while for significant negative Z-scores, the smaller z-scores 
and p-values indicate a stronger clustering of low values 
(cold spots). As it may be observed in Figure 11, statistically 
significant “hot” values nearly coincide with the NKDE hot-
spots. The effectiveness and robustness of the NKDE and the 
network-constrained Getis-Ord Gi* was confirmed by other 
researchers (Khalid et al., 2018; Nie et al. 2015).

7 	 Conclusion

The practice of hotspot policing, which calls for the iden-
tification of crime hotspots and the focusing of police resourc-
es in these areas, proves to be an effective crime prevention 
strategy in a range of different environments and for many 
different crime types (Braga et al., 2019). Traffic accidents, as 
an incident type which, in addition to crimes, requires police 
attention, are rarely random in space and time. In most cases, 
traffic accidents form clusters (also known as black spots) in a 
space (Mitar & Žnidaršič, 2012). For the purpose of improv-
ing road safety, it is vital to identify the street segments where 
the density of traffic incidents is relatively high, in compari-
son with other street network segments. If hotspot/black spot 
analysis does not accurately reflect the spatial patterning of 
incidents, the subsequent focusing of resources and the im-
plementation of remedial measures will not be effective. This 
is not an easy task, because it is often unclear where a hot spot 
begins and where it ends (Buerger, Cohn, & Petrosino, 1995; 
Paulsen & Robinson, 2004: 314–315).

In order to identify concentrations of incidents (hot-
spots), police analysts use various spatial statistical methods. 

Figure 11: The Getis-Ord Gi* statistics applied to the NKDE output
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The KDE is often their first and only choice. Due to its planar 
circular search radius and the Euclidean distance measure-
ment, the KDE may yield a bias in density estimation when 
applied to a network distribution. This does not hold true 
only for traffic incidents (i.e. typical linear incidents), but 
may also apply to crime incidents, as a result of the influence 
which the urban setting (street network) may have on their 
distribution. Analysts, often unaware of this issue, still use 
the KDE uncritically when analysing linear or “linear-like” 
distributions. 

In view of the benefits of hotspot policing, crime analysts 
are strongly interested in identifying linear (street) segments 
where “linear” incidents are concentrated for the purpose of 
ensuring an effective deployment of resources and initiating 
remedial measures. If the attention is paid only to proxim-
ity, while neglecting connectivity, a distorted picture may be 
produced as a result.

According to the research presented in this paper, almost 
all linear (NKDE) hotspots are located inside the planar KDE 
hotspots. Hence, the planar KDE hotspots may provide a satis-
fying (general) overview of incident distribution. At the same 
time, the linear NKDE output ensures a more accurate hot-
spot identification. The planar KDE covers a space, in which 
linear incidents cannot occur (e.g. outside streets), while the 
NKDE can even differentiate between different lanes of the 
same road segment. Due to its planar search bandwidth, the 
KDE output (hotspot) may include close, albeit unrelated 
incidents. Treating unrelated incidents as a single problem 
may undermine problem-solving efforts when it comes to the 
problem identification and analysis. Another KDE-related 
difficulty lies in the overestimation of density at nodes (e.g. 
street intersections or roundabouts). In this research study, 
almost all (planar) hotspots in the study area were located 
around nodes, which became more pronounced when the 
search bandwidth increased. 

The NKDE applicability is often limited to a moder-
ate search bandwidth. As the search bandwidth increases, 
the NKDE becomes computationally demanding, especially 
when the equal-split continuous kernel function is used. The 
tendency of the planar KDE to overestimate density around 
street nodes, combined with the ability of the NKDE to show 
linear hotspots more accurately, suggests that the NKDE is 
more suitable for analysing incidents on street networks. The 
advantages of the KDE may lie in the fact that it is readily 
available to crime analysts who are already familiar with this 
method, and that it may be sufficient for a quick examina-
tion of general hotspot patterns reflecting linear incidents in 
urban environments. At the same time, one should exercise 
caution – any long-term solutions for problematic locations 

(hotspots or hot dots) might require the problem to be pre-
cisely identified, which, consequently, may tip the scales in 
favour of the NKDE. 

A greater availability of detailed point location data, 
which is mostly a result of advances in geospatial technolo-
gies (GIS, GNSS, etc.), must be accompanied by advances in 
the analysis methodology and the development of software 
applications capable of processing them. Due to the recent 
advancement in the network spatial analysis methods, the 
identification of network hotspots has become easier and 
more accurate. These methods must become a part of the 
crime analyst toolkit and complement the well-known pla-
nar methods in the everyday work of analysts. Why is this so 
important? In an urban environment, the spatial distribution 
of the majority of police calls for service is influenced by the 
street network. The network spatial analysis techniques may 
not only facilitate the identification of problems (network 
hotspots), but also make the deployment of resources more 
effective (e.g. police patrol optimisation). On the basis of 
the existing popularity of the planar KDE in police practice, 
it can reasonably be expected that the NKDE will be easily 
accepted both by analysts and by those who are using their 
products in decision-making (e.g. police managers). Finally, 
there is a need for additional research which would show how 
the NKDE works in different network settings (e.g. gridded 
networks, such as most US cities, vs. less gridded networks, 
such as European cities), when different types of crime occur 
on or near the streets, and, in particular, provide guidance as 
to the optimal choice of its parameters.
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Skozi zgodovino je bila policija pozorna na lokacije, ki generirajo veliko število kaznivih dejanj in prekrškov. Ta prizadevanja so postala 
bolj sistematična z uvedbo policijskega dela, usmerjenega na žarišča, v 90. letih 20. stoletja. Veliko raziskav, ki so bile izvedene v zadnjih 
treh desetletjih, je pokazalo, da lahko usmerjanje policije na lokacije, kjer se kriminaliteta koncentrira (kriminalna žarišča), ustvari 
preventivne učinke. Če kriminalna žarišča ne odražajo prostorskega zbiranja kriminalitete, potem (intenzivna) kriminalna dejavnost 
morda ne bo pritegnila pozornosti policije. Z razvojem kartiranja kriminalitete, podprte z razvojem informacijske tehnologije (npr. 
GIS) in metodo prostorske statistike, lahko policijski analitiki natančneje odkrivajo žarišča, kot je bilo to mogoče v preteklosti. Policijski 
analitiki uporabljajo za identifikacijo kriminalnih žarišč metodo prostorske statistike, ki temelji na predpostavki dvodimenzionalnega 
Evklidskega prostora. V urbanih okoljih lahko mreža ulic znatno vpliva na vzorce prostorske porazdelitve kaznivih dejanj. Kazniva 
dejanja se lahko koncentrirajo vzdolž ulic in oblikujejo linearna žarišča. Pri analizi takšnih linearnih porazdelitev lahko predpostavka 
homogenega dvodimenzionalnega prostora, ki je osnova »tradicionalnih« metod prostorske statistike, vodi do napačnih zaključkov. Da 
bi dobili objektivno identifikacijo linearnih žarišč, se morajo te metode prenesti v mrežni prostor. V članku so razložene posebnosti 
prostorske analize v mrežnem prostoru in njen pomen za analizo kriminalitete. V članku je bila uporabljena mrežna razširitev ene od 
najbolj priljubljenih metod identifikacije kriminalnih žarišč, tj. metoda ocene gostote jedra (ang. kernel density estimation, KDE). Na 
osnovi primerjave rezultatov mrežne in ravninske KDE so avtorji ugotovili, da mrežne KDE omogočajo bolj natančno identifikacijo 
žarišč in s tem bolj učinkovito uporabo virov.

Ključne besede: kartiranje kriminalitete, žarišča kriminalitete, prostorske analize, GIS, prometne nesreče
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