

ANALYTICAL REPORT

5F-MDMB-P7AICA (C20H28FN3O3)

methyl 2-{[1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]formamido}-3,3-dimethylbutanoate

Remark – other NPS detected:

Sample ID:	1899-17
Sample description:	powder
Sample type:	test purchase /ISF projekt (NFL-SI)
Date of sample receipt (M/D/Y):	12/18/2017
Date of entry (M/D/Y) into NFL database:	2/12/2018
Report updates (if any) will be published here:	http://www.policija.si/apps/nfl response web/seznam.php

Substance identified -	
structure (base form)	
Systematic name	methyl 2-{[1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]formamido}-3,3-
	dimethylbutanoate
Other names	methyl-[2-(1-(5-fluoropentyl)-1H-pyrrolo[2,3-b]pyridine-3-carboxamido)-3,3- dimethylbutanoate];
Formula (per base form)	C20H28FN3O3
M _w (g/mol)	377,46
Salt form/anions detected	base
StdInChIKey (per base form)	LIRBKFHBIDESHO-UHFFFAOYSA-N
Other NPS detected	
Additional info (purity)	impurity observed by GC-MS, HPLC_TOF (C19H17NO3, M=187.1208);
	compound was purchased as 4'N 5F-ADB5

¹ Created by OPSIN free tool: <u>http://opsin.ch.cam.ac.uk/</u> **DOI:** 10.1021/ci100384d

Report updates

date	comments (explanation)					

Instrumental methods (if applied) in NFL

1. GC-MS (Agilent): GC-method is RT locked to tetracosane (9.258 min). Injection volume 1 ml and split mode (1:50). Injector temperature: 280 0C. Chromatographic separation: on column HP1-MS (100% dimethylpolysiloxane), length 30 m, internal diameter 0.25 mm, film thickens 0.25 μ m. Carrier gas He: flow-rate 1.2 ml/min. GC oven program: 170 °C for 1 min, followed by heating up to 190 °C at rate 8 °C/min, then heating up to 293 0C at a rate of 18 °C/min, hold for 7.1 min, then heating at 50 °C/min up to 325 °C and finally 6.1 min isothermal. MSD source EI = 70 eV. GC-MS transfer line T= 235°C, source and quadropole temperatures 280°C and 180°C, respectively. Scan range m/z scan range: from 50 (30 until 6 min.) to 550 (300 until 6 min) amu.

2. HPLC-TOF (Agilent): 6230B TOF with Agilent 1260 Infinity HPLC with binary pump, column: Zorbax Eclipse XDB-C18, 50 x 4.6 mm, 1.8 micron. Mobile phases (A) 0.1% formic acid and 1mM ammonium formate in water; (B) 0.1% formic acid in methanol (B). Gradient: starting at 5% B, changing to 40% B over 4 min, then to 70% over 2 min and in 5 min to 100%, hold 1 min and back to 5%, equilibration for 1.7 min. The flow rate: 1.0 ml/min; Injection volume 1 µl. MS parameters: 2GHz, Extended Dynamic range mode to a maximum of 1700 amu, acquisition rate 1.30 spectra/sec. Sample ionisation: by Agilent Jet Stream technology (Dual AJS ESI). Ion source: positive ion scan mode with mass scanning from 82 to 1000 amu. Other TOF parameters: drying gas (N2) and sheath temperature 325 °C; drying gas flow rate 6 l/min; sheath gas flow rate 8 l/min; nebulizer 25 psig; Vcap. 4000 V; nozzle 2000 V; skimmer 65 V; fragmentor 175 V and Octopole RF 750 V.

3.FTIR-ATR (Perkin Elmer): scan range 4000-400 cm-1; resolution 4cm-1

4. GC- (MS)-IR condensed phase (GC-MS (Agilent) & IR (Spectra analyses-Danny)

GC-method: Injection volume 1 ml and split mode (1:5). Injector temperature 280 $^{\circ}$ C. Chromatographic separation as above (1). Split MS : IR = 1: 9.

MSD source EI = 70 eV. GC-MS transfer line T= 235° C, source and quadropole temperatures 280° C and 180° C, respectively. Scan range m/z scan range: from 50 (30 until 6 min.) to 550 (300) amu.

IR (condesed (solid) phase): IR scan range 4000 to 650, resolution 4 cm⁻¹.

5. **IC** (anions) (Thermo Scientific, Dionex ICS 2100), Column: IonPac AS19, 2 x 250mm; Eluent: 10mM from 0 to 10 min, 10-58 mM from 10 to 40min; Flow rate: 0.25 ml/min; Temperature: 30°C; Suppressor: AERS 500 2mm, suppressor current 13mA; Inj. Volume: 25 μ l

Supporting information

Solubility in	result/remark
CH ₂ Cl ₂	soluble
MeOH	soluble
H ₂ O	partially

Analytical technique:	applied	remarks
GC-MS (EI ionization)	+	NFL GC-RT (min): 11,1
		BP(1): 233; BP(2): 145,BP(3) :234,
HPLC-TOF	+	Exact mass (theoretical): 377,2115;
		measured value Δppm:-0,77;
		formula:C20H28FN3O3
FTIR-ATR	+	direct measurement (sample as received)
FTIR (solid phase) always	+	
as base form	–	
IC (anions)	+	
NMR (in FKKT)	+	extended report is given
validation		
other		

ANALYTICAL RESULTS

FTIR-ATR - direct measurement (sample as received)

IR (solid phase – after chromatographic separation)

TOF REPORT

Data File Sample Type Instrument Name Acq Method IRM Calibration Status Comment

5F-MDMB_P7AICA_1899-17.d Sample 6230B TOF LC-MS general-04_12_2017-XDB-C18-ESI+.m Succe

MeOH

Sample Name Position User Name Acquired Time DA Method

1899-17 P1-F6 ΤG 12/20/2017 1:40:01 PM a-Drugs_NFL.m

Compound Table

Label	Compound Name	MFG Formula	Obs. RT	Obs. Mass
Cpd 1: C9 H17 N O3		C9 H17 N O3	6.14	187.1212
Cpd 2: 5F-MDMB-P7AICA	5F-MDMB-P7AICA	C20 H28 F N3 O3	8.3	377.2118

Obs. m/	z Obs. RT	Obs. Mass
188.1286	6.14	187.1212
MFE MS Zo	omed Spectrum	
x10 6 C	pd 1: C9 H17 N	O3: +ESI MFE Spec
1.2		188.1286 ([C9 H17 N O3]-
1-		
0.8		
0.6		
0.4		
0.2		
0		II ,

160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 Counts vs. Mass-to-Charge (m/z)

MS Spectrum Peak List

Obs. m/z	Charge	Abund	Formula	Ion/Isotope
188.1286	1	1401819.75	C9 H17 N O3	(M+H)+
189.1318	1	133750.08	C9 H17 N O3	(M+H)+
190.1336	1	13163.34	C9 H17 N O3	(M+H)+
205.1547	1	8637.67	C9 H17 N O3	(M+NH4)+
206.1559	1	940.03	C9 H17 N O3	(M+NH4)+
210.1104	1	92921.22	C9 H17 N O3	(M+Na)+
211.1138	1	9734.15	C9 H17 N O3	(M+Na)+
212.1158	1	1259.04	C9 H17 N O3	(M+Na)+
226.0842	1	10784.27	C9 H17 N O3	(M+K)+
227.0877	1	1531.69	C9 H17 N O3	(M+K)+

Name	Obs. m/z	Obs. RT	Obs. Mass	DB RT	DB Formula	DB Mass	DB Mass Error (ppm)
5F-MDMB-P7AICA	378.2189	8.3	377.2118	8.3	C20 H28 F N3 O3	377.2115	-0.77
Compound Chromatograms							

x10 7 Cpd 2: 5F-MDMB-P7AICA: +ESI ECC Scan Frag=15... Cpd 2: 5F-MDMB-P7AICA: +ESI EIC(378.2186, 379.... x10 7 8/30 2.25 2 2 1.8 1.75 1.6 1.4 1.5 1.2 1.25 1 1 0.8 0.75 0.6 0.5 0.4 0.25 0.2 0 С 9.2 ġ

7.4 7.6 Counts vs. Acquisition Time (Min)

MFE MS Zoomed Spectrum

MS Spectrum	MS Spectrum Peak List							
Obs. m/z	Charge	Abund	Formula	Ion/Isotope				
378.2189	1	10734712	C20 H28 F N3 O3	(M+H)+				
379.2225	1	2525217.92	C20 H28 F N3 O3	(M+H)+				
380.2256	1	304992.62	C20 H28 F N3 O3	(M+H)+				
400.2014	1	1029663.31	C20 H28 F N3 O3	(M+Na)+				
755.4305	1	2301257.25		(2M+H)+				
756.4338	1	1057773.38		(2M+H)+				
757.4368	1	251219.03		(2M+H)+				
777.4124	1	2330047		(2M+Na)+				
778.4159	1	1088133.79		(2M+Na)+				
779.4188	1	250524.04		(2M+Na)+				

--- End Of Report ---

Peak Integration Report

Sample Name:	1899-17_IC	Inj. Vol.:	25,00
Injection Type:	Unknown	Dilution Factor:	1,0000
Program:	ANIONI	Operator:	kemija
Inj. Date / Time:	20-dec-2017 / 12:43	Run Time:	42,00

No.	Time min	Peak Name	Peak Type	Area µS*min	Height μS	Amount n.a.
		TOTAL:		0,00	0,00	0,00

University of Ljubljana Faculty of Chemist

Faculty of Chemistry and Chemical Technology Večna pot 113 P. O. Box 537 SI-1001 Ljubljana Slovenia Phone: +386 1 479 8558 janez.kosmrlj@fkkt.uni-lj.si

REPORT

Contract No.	C1714-17-460078 (Republic of Slovenia, Ministry of the Interior, POLICE)		
Sample ID:	1899-17		
Received date:	January 11, 2018		
Our notebook code:	NFL-1899-17		
NMR sample preparation:	21.6 mg (10.0 mg for NOESY) dissolved in 0.7 mL DMSO- d_6		
NMR experiments:	¹ H, ¹³ C, ¹⁹ F, ¹ H– ¹ H <i>gs</i> -COSY, ¹ H– ¹³ C <i>gs</i> -HSQC, ¹ H– ¹³ C <i>gs</i> -HMBC, ¹ H– ¹⁵ N <i>gs</i> -HMBC, NOESY		
Proposed structure with formula, exact mass, molecular weight:	HN HN O HN O HN O HN O Chemical Formula: C ₂₀ H ₂₈ FN ₃ O ₃ Exact Mass: 377,2115 Molecular Weight: 377,4604		
Chemical name:	Methyl 2-(1-(5-fluoropentyl)-1 <i>H</i> -pyrrolo[2,3- <i>b</i>]pyridine-3- carboxamido)-3,3-dimethylbutanoate		
Comments:	 The structure was elucidated by analysis of the above 1D and 2D NMR spectra and HRMS. The result is supported by the literature reports. Please, see below. >96% purity of a sample based on ¹H NMR spectrum. 		
Supporting information:	Copies of ¹ H and ¹³ C NMR spectra, ¹ H and ¹³ C FIDs.		
Principal investigator:	Prof. Dr. Janez Košmrlj		
Date of report:	February 5, 2018 Revised on February 11, 2018		

The 7-azaindole structure of the sample under investigation (NFL-1899-17) was confirmed over the 4-azaindole isomer on the basis of the following data:

The structure elucidation and the assignment of the NMR resonances were done by ¹H, ¹³C, ¹⁹F, ¹H-¹H gs-COSY, ¹H-¹³C gs-HSQC, ¹H-¹³C gs-HMBC, and ¹H-¹⁵N gs-HMBC spectral analysis. Briefly, the analysis of the two side-chains attached to the azaindole system was trivial. In ¹H-¹³C HMBC, the 5-fluoropentyl side-chain was the only one showing correlations with the azaindole carbon resonances, i.e., N1-CH₂/C2 and N1-CH₂/C7a (Spectrum 1). Atoms C2 and H2 were readily identified by ¹H-¹³C HSQC. Strong

HMBC correlations of H4 and H6, and a very weak correlation of H5 with C7a suggested the 7-azaindole system (Figure 1). The structure was corroborated by a strong H5/C3a cross-peak.

The proposed 7-azaindole structure is in good agreement with the literature reported data for proton and carbon resonances in closely related analogue NNL-1 (Table 1). In addition, the ¹H and ¹³C chemical shifts for the fused pyridine ring are in good agreement with the literature data for unsubstituted 7-azaindole (Table 1). In an excellent agreement with the literature data is also the ¹⁵N chemical shift for N7 (269 ppm *vs.* 270 ppm) (Spectrum 2).

Table 1. Comparison of 1 H and 13 C chemical shifts for the heterocyclic ring system for NFL-1899-17, NNL-1, and 7-azaindole.

	$ \begin{array}{c} $	6" NH ₂ 6" NH ₂ 6" NH ₂ 6" NH ₂ 7 0 0 0 0 0 0 0 0 0 0 0 0 0	$5 + \frac{4}{N} + \frac{3a}{7} + \frac{3a}{$	$5 \underbrace{\begin{pmatrix} 4 & 3a \\ N & 7a \\ H \end{pmatrix}}_{7} 2$
	NFL-1899-17	NNL-1	-	- , , , , , , , , , , , , , , , , , , ,
Position	δ / ppm ^{a,b}	δ / ppm ^{a,c}	δ / ppm ^{a,e}	δ / ppm ^{<i>a</i>,<i>i</i>}
H2	8.63	8.41		
H4	8.42	8.42		
H5	7.22	7.20		
H6	8.32	8.31		
C1′	164.4	163.6		
C2	132.2	131.2	125.5	125.4
C3	107.8	108.0	100.5	100.4
C3a	119.6	118.8	120.7	
C4	130.1	129.4	129.0	129.0
C5	117.8	117.1	115.6	115.6
C6	143.7	143.2	142.1	142.1
C7a	147.7	147.1	148.9	
N1	148			139.1
N7	269			270.1

^{*a*} Recorded in DMSO- d_6 .

^b Complete assignment of ¹H and ¹³C resonances was made by analysis of ¹H, ¹³C, ¹⁹F, ¹H–¹H gs-COSY, ¹H–¹³C gs-HSQC, ¹H–¹³C gs-HMBC, and ¹H–¹⁵N gs-HMBC spectra.

^c Data from: Z. Qian, W. Jia, T. Li, Z. Hua, C. Liu, Identification and analytical characterization of four synthetic cannabinoids ADB-BICA, NNL-1, NNL-2, and PPA(N)-2201, *Drug Test. Analysis* **2016**, DOI 10.1002/dta.1990. ^d in CDCl₃.

^e Data from: R. H. Cox, S. Sankar, ¹H and ¹³C NMR Studies of 7-Azaindole and Related Compounds, *Organic Magnetic Resonance*, **1980**, *14*, 150–152.

^f Data from: S. Minakata, S. Itoh, M. Komatsu, Y. Ohshlro, Y. Yokomichi, Multinuclear NMR and *ab initio* MO studies of 7-methyl-7H-pyrrolo [2,3-*b*]pyridine and related compounds, *Journal Of Physical Organic Chemistry*, **1993**, *6*, 139–144.

Should the structure of the heterocyclic system be interpreted as a 4-azaindole, the presence of one ${}^{1}\text{H}{-}{}^{13}\text{C}$ HMBC strong cross-peak between H5 (8.32 ppm) and C7a (147.7 ppm), and the absence of a strong cross-peak between H6 (7.22 ppm) and C7a (147.7 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) and C7a (147.7 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) and C7a (147.7 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) and C7a (147.7 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) and C7a (147.7 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) and C7a (147.7 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) and C7a (147.7 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) and C7a (147.7 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) and C7a (147.7 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) and C7a (147.7 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) and C7a (147.7 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between H6 (7.22 ppm) are less equivalence of a strong cross-peak between

(147.7 ppm) are less convincing (Spectrum 3). Also less likely is the presence of strong ${}^{1}H{-}^{13}C$ HMBC correlation between H6 (7.22 ppm) and C3a (119.6 ppm).

In NOESY spectrum there is a strong correlation between N1-CH₂ protons and H2, whereas the correlation between N1-CH₂ protons and H7 is missing (Spectrum 4). Although the absence of information is not a positive proof, based on the vicinity of N1-CH₂ and H7, it is unlikely that the N1-CH₂/H7 correlation is not seen if the structure of NFL-1899-17 was 4-azaindole.

The tentatively suggested 4-azaindole structure of the sample under investigation (NFL-1899-17) is not in agreement with the literature reported data for 4-azaindole, especially in the chemical shifts for C7 and N4 (Table 2).

Table 2. Comparison of ¹H and ¹³C chemical shifts for the heterocyclic ring system for NFL-1899-17 (tentatively assigned to 4-azaindole structure) and unsubstituted 4-azaindole.

	4 6 7 0 HN 1' 0 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \\ 7 \\ 7 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
	NFL-1899-17	
Position	δ / ppm a,b	δ / ppm ^{c,d}
H2	8.63	
H5	8.32	
H6	7.22	
H7	8.42	
C2	132.2	128.7
C3	107.8	102.3
C3a	119.6	
C5	143.7	142.6
C6	117.8	116.5
C7	130.1	119.0
C7a	147.7	
N1	148	131.5
N4	269	295.5

^{*a*} Recorded in DMSO- d_6 .

^b Complete assignment of ¹H and ¹³C resonances was made by analysis of ¹H, ¹³C, ¹⁹F, ¹H–¹H gs-COSY, ¹H–¹³C gs-HSQC, ¹H–¹³C gs-HMBC, and ¹H–¹⁵N gs-HMBC spectra.

^c in $CDCl_3$.

^d Data from: S. Minakata, S. Itoh, M. Komatsu, Y. Ohshlro, Y. Yokomichi, Multinuclear NMR and *ab initio* MO studies of 7-methyl-7H-pyrrolo [2,3-*b*]pyridine and related compounds, *Journal Of Physical Organic Chemistry*, **1993**, *6*, 139–144.

Spectrum 1. Relevant part of ${}^{1}H-{}^{13}C$ *gs*-HMBC spectrum of NFL-1899-17 with assignment.

Spectrum 2. ¹H–¹⁵N *gs*-HMBC spectrum of NFL-1899-17 with assignment.

6

Spectrum 3. Relevant part of ${}^{1}H-{}^{13}C$ *gs*-HMBC spectrum of NFL-1899-17 with tentatively assigned 4-azaindole structure.

Spectrum 4. Relevant part of NOESY spectrum of NFL-1899-17 with tentatively assigned 4-azaindole structure.